6.2 Strategies to Optimize Delivery and Minimize Risks of EN: Small Bowel Feeding vs. Gastric

Question: Does enteral feeding via the small bowel compared to gastric feeding result in better outcomes in the critically ill adult patient?

Summary of evidence: Twenty randomized trials that were reviewed, all except 1 (Zhu 2018) were level 2 studies. In the Taylor 1999 study, only 34% of the patients achieved small bowel access in this study (large number of protocol violations), while Minard 2000 compared outcomes in patients receiving early immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition via the small bowel to those receiving delayed immune enhanced enteral nutrition v

Mortality: Based on the 16 studies that reported on mortality, no significant differences between the groups were found (RR 0.97, 95% CI 0.83, 1.13, p=0.71, heterogeneity I²=0%; figure 1). When Taylor 1999 & Minard 2000 were excluded, the mortality difference between the groups were still not significant (RR 0.98, 95% CI 0.84, 1.15, p=0.80, heterogeneity I²=0%; figure 2).

Infections (Pneumonia): Based on the 17 studies that reported on pneumonia, the meta-analysis showed that small bowel feeding was associated with a reduction in pneumonia when compared to gastric feeding (RR 0.72, 95% CI 0.57, 0.91, p=0.006, heterogeneity I²=26%; figure 3). When the studies by Taylor 1999 and Minard 2000 were removed from the analysis, small bowel feeding was still associated with reduction of pneumonia (RR 0.70, 95% CI 0.53, 0.93, p=0.01, heterogeneity I²=32%; figure 4).

LOS: When all 13 studies that reported ICU LOS were aggregated, enteral feeding via the small bowel had no effect on ICU length of stay (WMD - 0.56, 95% CI -3.28, 2.16, p=0.68, heterogeneity I²=97%; figure 5). When the Minard study was excluded from the analysis, the signal did not change (WMD -1.09, 95% CI -3.88, 1.71, p=0.45, heterogeneity I²=98%; figure 6). Based on the aggregation of the 6 studies that reported hospital LOS, enteral feeding via the small bowel had no effect on hospital length of stay (WMD 0.01, 95% CI -3.12, 3.15, p=0.99, heterogeneity I²=7%; figure 7) when compared to gastric feeding.

Ventilator days: Based on the aggregation of the 9 studies that reported duration of ventilation, enteral feeding via the small bowel compared to gastric feeding showed a trend towards shorter duration of ventilation (WMD -1.23, 95% CI -2.79, 0.33, p=0.12, heterogeneity I²=75%; figure 8).

Nutritional Outcomes: Many studies reported on nutritional complications, such as GI bleeds, vomiting, diarrhea, constipation and abdominal bloating. There was no difference between the 2 groups in some studies (Davies 2011, White 2009, Friedman 2015), while other reported a significant improvement in nutritional outcomes in the group fed via small bowel such as better nutrition efficiency (Hsu 2009, Acosta-Escribano 2010, Taylor 2016), calorie/protein intake & less time to reach goal (Hsu 2009), vomiting (Hsu 2009, Zhu 2018) and significantly less gastrointestinal tract colonization and high gastric residual volumes (Acosta-Escribano 2010). The studies that reported nutritional delivery generally showed better

success at meeting goal targets and reaching them sooner. However, this could also be explained by the confounded nature of different gastric feeding strategies. When the data from the 6 studies that reported nutritional efficiency (% goal rate received) as a mean ± standard deviation were aggregated, small bowel feeding compared to gastric feeding was associated with a significantly greater percentage of nutritional efficiency (WMD 10.59, 95% CI 4.76, 16.41, p=0.0004, heterogeneity I²=88%; figure 9). When the data from the 4 studies that reported the time to reach nutritional goal rate were aggregated, small bowel feeding compared to gastric feeding had no effect on the time to reach nutritional goals (WMD -3.41, 95% CI -13.45, 6.62, p=0.51, heterogeneity I²=87%; figure 10). One study (Friedman 2015) reported a significant increase in cost when using small bowel vs gastric feeds, though the details on this calculation and the statistical significance was not reported.

Other complications: The group that had a more aggressive feeding regimen and small bowel feeding (Taylor 1999) had fewer major complications and a better neurological outcome at 3 months than the group receiving gastric feeds.

Conclusions:

Small bowel feeding, compared to gastric feeding

- 1) is associated with a reduction in pneumonia in critically ill patients.
- 2) may be associated with a reduction in duration on ventilation in critically ill patients.
- 3) has no effect on mortality, and ICU and hospital length of stays.
- 4) is associated with improved calorie and protein intake and with less time taken to reach target rate of enteral nutrition

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. Level 2 study: If any one of the above characteristics are unfulfilled.

Study	Population	Methods (score)		ty # (%)† _{Gastric}	Pneumor Small bowel	nia # (%)‡ _{Gastric}
1. Montecalvo 1992	Med/Surg ICU Anticipated feed >3days N=38 from 2 ICUs	C.Random: not sure ITT: no Blinding: no (8)	5/19 (26)	5/19 (26)	4/19 (21)	6/19 (32)
2. Kortbeek 1999	Trauma ISS>16 Vent >48h N=80 from 2 ICUs	C.Random: yes ITT: yes Blinding: no (11)	4/37 (11)	3/43 (7)	10/37 (27)	18/43 (42)
3. Taylor 1999	Head injured ventilated > 10 yrs N=82	C.Random: not sure ITT: yes Blinding: no (10)	6-month 5/41(12)	6-month 6/41 (15)	Pneu 18/41 (44) Total In 25/41 (61)	monia 26/41 (63) fections 35/41 (85)
4. Kearns 2000	MICU Feed >3days APACHE ~21 N=44	C.Random: not sure ITT: yes Blinding: no (9)	5/21 (24)	6/23 (26)	4/21 (19)	3/23 (13)
5. Minard 2000	Trauma GCS 3-10 N=27	C.Random: not sure ITT: no Blinding: no (7)	1/12 (8)	4/15 (27)	6/12 (50)	7/15 (47)
6. Esparaza 2001	MICU MV = 98% APACHE ~25 N=54	C.Random: not sure ITT: yes Blinding: no (8)	10/27 (37)	11/27 (41)	NR	NR
7. Boivin 2001	Med/Surg/Neuro MV~98% Feed >72h APACHE~16 N=80	C.Random: not sure ITT: no Blinding: no (6)	18/39 (46)	18/39 (46)	NR	NR

Table 1. Randomized studies evaluating small bowel feeding vs. gastric in critically ill patients

8. Day 2001	Neurological ICU APACHE ~ 48 N=25	C.Random: not sure ITT: yes Blinding: no (5)	NR	NR	0/14 (0)	2/11 (18)
9. Davies 2002	Med/surg/trauma Feed > 3days MV=90%; APACHE~21 N=73	C.Random: not sure ITT: no Blinding no (8)	4/34 (12)	5/39 (13)	2/31 (6)	1/35 (3)
10. Neumann 2002	MICU N=60	C.Random: not sure ITT: yes Blinding: no (6)	NR	NR	NR	NR
11. Montejo 2002	14 ICU APACHE ~18 Feed >5days N=101 from 11 ICUs	C.Random: not sure ITT: yes Blinding: no (6)	19/50 (38)	22/51 (43)	16/50 (32)	20/51 (39)
12. Hsu 2009	Medical ICU Anticipated feed >3days N=121	C.Random: Yes ITT: Yes Blinding: No (9)	26/59 (44)	24/62 (39)	5/59 (9)	15/62 (24)
13. White 2009	Medical ICU mechanically ventilated >24hrs N=108	C.Random: Yes ITT: Yes Blinding: No (7)	11/50 (22)	5/54 (9)	5/50 (10)	11/54 (20)
14. Acosta- Escribano 2010	Traumatic brain injury, mechanically ventilated patients in ICU required EN for >5 days N=104	C.Random: No ITT: Yes Blinding: No (9)	30-day 6/50 (12)	30-day 9/54 (17)	16/50 (32)	31/54 (57)

15. Davies 2012	Critically ill , mechanically ventilated, on narcotic infusion with elevated GRV from 17 ICUs N=181	C.Random: Yes ITT: Yes Blinding: No (11)	13/91 (14)	12/89 (13)	18/91 (20)	19/89 (21)
16. Friedman 2015	Critically ill adults withour contraindication for enteral nutrition, expected ICU LOS >48 hrs N=115	C.Random: Yes ITT: Yes Blinding: No (9)	ICU 20/54 (37)	ICU 22/61 (36)	13/54 (24)	12/61 (20)
17. Wan 2015	Mixed ICU patients. Single Centre. N=70	C.Random: Yes ITT: Yes Blinding: No (8)	NR	NR	Aspiration pneumonia 0/35	Aspiration pneumonia 10/35
18. Taylor 2016	Mechanically ventilated patients with delayed gastric emptying (vomiting or 1 episode GRV>250ml) after first line prokinetic treatment over 24h N=50	C.Random: Yes ITT: Yes Blinding: No (9)	28-day 4/25 (16)	28-day 4/25 (16)	VAP 2/25	VAP 4/25
19. Zhu 2018	Elderly (Age≥75) expected to be mechanically ventilated for >48h and required EN for ≥2 days N=141	C.Random: Yes ITT: Yes Blinding: Outcome assessors (12)	ICU 32/70 (45.7) Hospital 37/70 (52.9)	ICU 40/71 (56.3) Hospital 43/71 (60.6)	VAP 8/70 (11.4)	VAP 18/71 (25.4)
20. Liu 2019	Patients with severe craniocerebral injury N=100	C.Random: Not sure ITT: Yes Blinding: Yes (not clear who was blinded) (9)	NR	NR	Lung infection 4/50 (8)	Lung infection 11/50 (22)

Study	Idy LOS days Small bowel Gastric		Ventila Small bowel	tor days _{Gastric}	Nutritional Outcomes Small bowel Gastric	Ot Small bowel	Other Small bowel Gastric			
1. Montecalvo 1992	ICU 11.7 ± 8.2 (19)	ICU 12.3 ± 10.8 (19)	10.2 ± 7.1 (19)	11.4 ± 10.8 (19)	Daily caloric intake (%) 61 ± 17 46.9 ± 25.9	Gl bleeding 7/19 (37) Diarrhea 12/19 (63) Vomiting 3/19 (16)	Gl bleeding 6/19 (32) Diarrhea 9/19 (47) Vomiting 3/19 (16)			
2. Kortbeek 1999	ICU 10 (3-24) Hospital 30 (16-47)	ICU 7 (3-32) Hospital 25 (9-88)	9 (2-13)	5 (3-15)	Time to tolerate full feeds 34 ± 7.1 43.8 ± 22.6	NR	NR			
3. Taylor 1999	NR	NR	NR	NR	% energy needs met (mean) 59.2 36.8 % nitrogen needs met (mean) 68.7 37.9	37 % major complications 61 % had better neurological outcome at 3 months	61 % major complications 39 % had better neurological outcome at 3months			
4. Kearns 2000	ICU 17 ± 2 (21) Hospital 39 ± 10 (21)	ICU 16 ± 2 (23) Hospital 43 ± 11 (23)	NR	NR	$\begin{array}{c} \textbf{Calories (kcal/kg/day)} \\ 18 \pm 1 & 12 \pm 2 \\ \textbf{Protein (gm/kg/day)} \\ 0.7 \pm 0.1 & 0.4 \pm 0.1 \\ \textbf{\% REE delivered} \\ 69 \pm 7 & 47 \pm 7 \end{array}$	Diarrhea 3 days	Diarrhea 2 days			

Table 1. Randomized studies evaluating small bowel feeding vs. gastric in critically ill patients (continued)

5. Minard 2000	ICU 18.5 ± 8.8 (12) Hospital 30 ± 14.7 (12)	ICU 11.3 ± 6.1 (12) Hospital 21.3 ± 14.7 (12)	15.1 ± 7.5 (12)	10.4 ± 6.1 (15)	Time feeding initiated (hours) 33 ± 15 84 ± 41 Avg kcals/ day 1509 ± 45 1174 ± 425 Days fed 13 ± 3.7 8 ± 4.5 # patients with > 50 % goal for ≥ 5 days $10/12 (83)$	Diarrhea 11/12 (92) Vomiting 1/12 (8)	Diarrhea 8/15 (53) Vomiting 3/15 (20)
6. Esparaza 2001	NR	NR	NR	NR	Feed days (average) 3.6 4.1 Average daily % of goal 66 64	NR	NR
7. Boivin 2001	NR	NR	NR	NR	Time of placement304 minutes13 minutesTime to goal rate achieved and maintained for 4 hoursfor 4 hours33 hours32 hours	NR	NR
8. Day 2001	NR	NR	NR	NR	Calories and protein received were significantly higher only on days 2 and 3 in the gastric group. No difference between the groups on Days 1, 4-10. Replaced tubes 16/14 9/11	Diarrhea 7/14 (50)	Diarrhea 5/11 (45)
9. Davies 2002	ICU 13.9 ± 1.8 (34)	ICU 10.4 ± 1.2 (39)	NR	NR	$\begin{array}{c c} \textbf{Time to reach target rate}\\ 23.2\pm3.9 & 23.0\pm3.4\\ \textbf{Time to start feeds}\\ 81.2\pm13.4 & 54.5\pm4.9 \end{array}$	GI bleeding 3/31 (10) Diarrhea 4/31 (13)	GI bleeding 0/35 (0) Diarrhea 3/35 (9)
10. Neumann 2002	NR	NR	NR	NR	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Aspiration 1/30 (3)	Aspiration 0/30 (0)

11. Montejo 2002	ICU 15 ± 10 (50)	ICU 18 ± 16 (50)	NR	NR	$\begin{array}{rl} \mbox{High gastric residuals} \\ 1/50 (2) & 25/51 (49) \\ \mbox{Caloric intake (mean)} \\ 1286 \pm 344 & 1237 \pm 342 \\ \mbox{Volume ratio at day 7 (%)} \\ 80 \pm 28 & 75 \pm 30 \end{array}$	Diarrhea 7/50 (14) Vomiting 4/50 (8)	Diarrhea 7/51 (14) Vomiting 2/51 (4)
12. Hsu 2009	$\begin{array}{c} \textbf{ICU} \\ 18.20 \pm 11.80 \\ \textbf{Hospital} \\ 36.0 \pm 24.2 \end{array}$	ICU 18.20 ± 11.20 Hospital 31.7 <u>+</u> 21.1	28.5 ± 24.9 (59)	23.8 ± 18.2 (62)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Vomiting 1/59 (2) GI bleeding 7/59 (12) Time to reach goal 32.4 (27.1) hrs	Vomiting 8/62 (13) GI bleeding 9/62 (15) Time to reach goal 54.5 (51.4) hrs
13. White 2009	ICU 5.3 (2.73-9.89) 7.12 ± 6.00 (51)*	ICU 5.02 (1.98-9.99) 9.10 ± 10.55 (55)*	3.93 (2.3-8.38) 5.73 ± 5.29 (51)*	3.92 (1.5-8.54) 7.68 ± 9.81 (55)*	Caloric intake (median, IQR) 1463 (1232-1804) 1588 (913-1832) Protein intake (median, IQR) 63 (50-78) 69 (45-87)	Time to reach goal 4.1 (3.4-5.0) hrs	Time to reach goal 4.3 (4.0-5.0)
14. Acosta- Escribano 2010	ICU 16 ± 9 (50) Hospital 38 ± 24 (50)	ICU 18 ± 7 (54) Hospital 41 ± 28 (54)	7.3 ± 4 (50)	8.9 ± 4 (54)	Nutritional efficiency (%) 92 ± 7 84 ± 15	High GRVs 3/50 (6) GIT complications 7/50 (14)	High GRVs 15/54 (28) GIT complications 27/54 (47)
15. Davies 2012	ICU 10 (7-15) 12.5 ± 8.6 (91)* Hospital 20 (11-33) 28.8 ± 26.1 (91)*	ICU 11 (7-16) 12.7 \pm 9.8 (89)* Hospital 24 (15-32) 27.4 \pm 21.1 (89)*	8 (6-12) 9.8 ± 6.2 (91)*	8 (5-14) 9.7 ± 6.3 (89)*	Nutritional efficiency (%) 72 71 p=0.66 Caloric intake (mean) 1497 ± 521 1444 ± 485	Major haemorrhage 2/91 (2) Minor haemorrhage 12/91 (13) Vomiting 30/91 (33) Aspiration 5/91 (5) Diarrhea 26/91 (29) Abdom distention 16/91 (18)	Major haemorrhage 2/89 (2) Minor haemorrhage 3/89 (3) Vomiting 30/89 (30) Aspiration 4/89 (5) Diarrhea 26/89 (30) Abdom distention 18/89 (20)

Critical Care Nutrition: Systematic Reviews May 2021

16. Friedman 2015	ICU 10 (7-21) (54)	ICU 12 (8-20) (61)	4 (2-11) (54)	7 (3-13) (61)	NR	Cost, US\$ 1163 Diarrhea 15/54 (28) Vomiting 14/54 (26) Constipation 9/54 (17)	Cost, US\$ 467 Diarrhea 11/61 (18), p=0.306 Vomiting 18/61, p=0.826 Constipation 14/61 (23), p=0.544
17. Wan 2015	ICU 12.2 <u>+</u> 0.7 (35)	ICU 17.1 <u>+</u> 1.0 (35)	5.2 <u>+</u> 0.3 (35)	8.5 <u>+</u> 0.5 (35)	NR	Cost 5203 <u>+</u> 247 Diarrhea 9/35 Reflux 1/35	Cost 7786 <u>+</u> 555, P <0.01 Diarrhea 9/35 Reflux 14/35, P <0.01
18. Taylor 2016	ICU-free days 10 (0-16) ICU 14.24±8.97(25)*	ICU-free days 11 (0-19) ICU 14.00±8.41(25)*	Ventilator-free days 21 (16-25) Ventilator days 8.28±5.01 (25)*	Ventilator-free days 20 (13-25) Ventilator days 10±6.95 (25)*	Area under the curve of feed goal 432 (253-464)%. 350 (213-381)% p=0.026	Diarrhea 0/25 Vomiting 3/25	Diarrhea 2/25 Vomiting 5/25
19. Zhu 2018	ICU 402.14±272.59h (70)* (16.76±11.36 d) Hospital 21.06 ±12.81 (70)*	ICU 461.96 ±394.56h (71)* (19.25±16.44 d) Hospital 21.97±20.18 (71)*	290.20±211.40h (70)* (12.09±8.81d)	362.42±374.35h (71)* (15.10±15.60d)	Achieve energy goal by EN in the first 7 days 40/70 (57.1) 32/71 (45.1) p=0.15	Vomiting 12/70 (17.1) Diarrhea 6/70 (8.57) Abdominal distension 18/70 (25.7) Abdominal pain 4/70 (5.71)	Vomiting 29/71 (41.4) Diarrhea 4/71 (5.63) Abdominal distension 33/71 (46.5) Abdominal pain 3/71 (4.22)
20. Liu 2019	ICU 12.96±4.11 (50)	ICU 15.83±4.72 (50)	NR	NR	NR	Aspiration 1/50 (2) Regurgitation 3/50 (6) GI bleed 5/50 (10) Diarrhea 8/50 (16) Vomiting/ GRV>150 ml 0	Aspiration 7/50 (40) Regurgitation 10/50 (20) GI bleed 6/50 (12) Diarrhea 11/50 (22) Vomiting/ GRV>150 ml 6/50 (22)

C.Random: concealed randomization

TT: intent to treat † presumed ICU mortality unless otherwise specified ‡ refers to the # of patients with infections unless specified * Data obtained from author

± (): mean ± Standard deviation (number) (-): median (range) NR: not reported

Figure 1. Mortality

	Small B	owel	Gast	ric		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total			Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Montecalvo 1992	5	19	5	19	2.1%	1.00 [0.35, 2.90]	
Contbeek 1999	4	37	3	43	1.2%	1.55 [0.37, 6.48]	
Faylor 1999	5	41	6	41	2.0%	0.83 [0.28, 2.52]	
Cearns 2000	5	21	6	23	2.3×	0.91 [0.33, 2.55]	
Minard 2000	1	12	4	15	0.6%	0.31 [0.04, 2.44]	•
Esparaza 2001	10	27	11	27	5.4%	0.91 [0.47, 1.78]	
Solvin 2001	18	39	18	39	10.5%	1.00 [0.62, 1.62]	
Davies 2002	4	34	5	39	1.6%	0.92 [0.27, 3.14]	
Montejo 2002	19	50	22	51	10.6%	0.88 [0.55, 1.42]	
Hsu 2009	26	59	24	62	13.4%	1.14 [0.74, 1.74]	
White 2009	11	51	5	57	2.5%	2.46 [0.92, 6.60]	+
Acosta-Escribano 2010	6	50	9	54	2.6%	0.72 [0.28, 1.88]	
Davies 2012	13	91	12	69	4.6%	1.06 [0.51, 2.19]	
riedman 2015	20	54	22	61	10.4%	1.03 [0.63, 1.66]	
Faylor 2016	4	25	4	25	1.5%	1.00 [0.28, 3.56]	
Zhu 2018	37	70	43	71	28.7%	0.87 [0.65, 1.17]	
Fotal (95% CI)		680		716	100.0%	0.97 [0.83, 1.13]	•
Fotal events	166		199				
Heterogeneity: $Tau^2 = 0.0$		6.87. 4		P = 0.9	$(6); t^2 = 0$	× I	
Fest for overall effect: Z =	-	-	-			-	0.1 0.2 0.5 1 2 5 10 Favours small bowel Favours gastric

	Small B	owel	Gast	ric		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl
Montecalvo 1992	5	19	5	19	2.2%	1.00 [0.35, 2.90]	1992	
Kortbeek 1999	4	37	3	43	1.2%	1.55 [0.37, 6.48]	1999	
Kearns 2000	5	21	6	23	2.3%	0.91 [0.33, 2.55]	2000	
Esparaza 2001	10	27	11	27	5.5%	0.91 [0.47, 1.78]	2001	
Bolvin 2001	18	39	16	39	10.8%	1.00 [0.62, 1.62]	2001	
Montejo 2002	19	50	22	51	11.0%	0.88 [0.55, 1.42]	2002	
Davies 2002	4	34	5	39	1.6%	0.92 [0.27, 3.14]	2002	
Hsu 2009	26	59	24	62	13.7%	1.14 [0.74, 1.74]	2009	_
Acosta-Escribano 2010	6	50	9	54	2.7%	0.72 [0.28, 1.88]	2010	
White 2009	11	51	5	57	2.5%	2.46 [0.92, 6.60]	2010	
Davies 2012	13	91	12	89	4.7%	1.06 [0.51, 2.19]	2012	
Friedman 2015	20	54	22	61	10.7%	1.03 [0.63, 1.66]	2015	_
Taylor 2016	4	25	4	25	1.5%	1.00 [0.28, 3.56]	2016	
Zhu 2018	37	70	43	71	29.5%	0.87 [0.65, 1.17]	2018	
Total (95% CI)		627		660	100.0%	0.98 [0.84, 1.15]		•
Total events	162		169		_			
Heterogeneity: $Tau^2 = 0.4$				P=0.9	96); l ² = () %		0.1 0.2 0.5 1 2 5 10
Test for overall effect: Z -	= 0.25 (P	= 0.80)	•					Favours small bowel Favours gastric

Figure 2. Mortality (excluding Taylor 1999 and Minard 2000)

Figure 3. Pneumonia

-	Small B	lowel	Gast	ric		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M–H, Random, 95% Cl
Montecalvo 1992	4	19	6	19	3.6%	0.67 [0.22, 1.99]	1992	
Kortbeek 1999	10	37	16	43	8.6%	0.65 [0.34, 1.22]	1999	
Taylor 1999	18	41	26	41	13.6%	0.69 [0.46, 1.05]	1999	
Kearns 2000	4	21	3	23	2.5%	1.46 [0.37, 5.78]	2000	
Minard 2000	6	12	7	15	6.5X	1.07 [0.49, 2.34]	2000	_ _
Day 2001	0	14	2	11	0.6%	0.16 [0.01, 3.03]	2001	• · · · · · · · · · · · · · · · · · · ·
Davies 2002	2	31	1	35	0.9%	2.26 [0.22, 23.71]	2002	
Montejo 2002	16	50	20	51	10.8%	0.82 [0.48, 1.39]	2002	
Hsu 2009	5	59	15	62	4.6%	0.35 [0.14, 0.90]	2009	_
White 2009	11	57	5	51	4.5%	1.97 [0.73, 5.26]	2010	
Acosta-Escribano 2010	16	50	31	54	12.4%	0.56 [0.35, 0.89]	2010	
Davies 2012	18	91	19	69	9.8X	0.93 [0.52, 1.65]	2012	
Friedman 2015	13	54	12	61	7.7%	1.22 [0.61, 2.45]	2015	-
Wan 2015	0	35	10	35	0.7%	0.05 [0.00, 0.78]		·
Faylor 2016	2	25	4	25	1.9%	0.50 [0.10, 2.49]	2016	
Zhu 2018	8	70	18	71	6.7%	0.45 [0.21, 0.97]	2018	
Llu 2019	4	50	11	50	3.9X	0.36 [0.12, 1.07]	2019	
Total (95% CI)		716		736	100.0%	0.72 [0.57, 0.91]		•
Total events	137		208					
Heterogeneity: Tau ² = 0.6	06; Chl ² =	21.72	df = 16	$\langle \mathbf{P}=0$.15); 🖞 =	26%		0.01 0.1 1 10 100
Test for overall effect: Z -								0.01 0.1 1 10 10 Favours Small bowel Favours Gastric

	Small B	owel	Gast	ric		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M–H, Random, 95% Cl
Montecalvo 1992	4	19	6	19	5.1%	0.67 [0.22, 1.99]	1992	
Kortbeek 1999	10	37	16	43	10.7%	0.65 [0.34, 1.22]	1999	
Kearns 2000	4	21	3	23	3.5%	1.46 [0.37, 5.78]	2000	
Day 2001	0	14	2	11	0.9%	0.16 [0.01, 3.03]	2001	←
Davies 2002	2	31	1	35	1.3×	2.26 [0.22, 23.71]	2002	
Montejo 2002	16	50	20	51	12.6%	0.62 [0.46, 1.39]	2002	
Hsu 2009	5	59	15	62	6.4X	0.35 [0.14, 0.90]	2009	-
White 2009	11	57	5	51	6.0%	1.97 [0.73, 5.28]	2010	
Acosta-Escribano 2010	16	50	31	54	14.3X	0.56 [0.35, 0.89]	2010	
Davies 2012	18	91	19	69	11. 6X	0.93 [0.52, 1.65]	2012	
Friedman 2015	13	54	12	61	9.6X	1.22 [0.61, 2.45]	2015	
Wan 2015	0	35	10	35	1.0%	0.05 [0.00, 0.78]	2015	←─────
Taylor 2016	2	25	4	25	2.7%	0.50 [0.10, 2.49]	2016	
Zhu 2018	6	70	16	71	8.6X	0.45 [0.21, 0.97]	2018	
Llu 2019	4	50	11	50	5.3%	0.36 [0.12, 1.07]	2019	
Total (95% CI)		663		680	100.0%	0.70 [0.53, 0.93]		◆
Total events	113		175					
Heterogeneity: $Tau^2 = 0.1$	09; Cht ² =	20.62,	df = 14	$(\mathbf{P}=0)$.11); f =	32%		
Test for overall effect: Z •								0.1 0.2 0.5 1 2 5 1 Favours Small bowel Favours Gastric

Figure 4. Pneumonia (excluding Taylor 1999 and Minard 2000)

Figure 5. ICU LOS

0	Sm	all Bowe	el	(Gastric			Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
Montecalvo 1992	11.7	8.2	19	12.3	10.8	19	6.2%	-0.60 [-6.70, 5.50]	1992	
Kearns 2000	17	2	21	16	2	23	6.6X	1.00 [-0.18, 2.18]	2000	<u> </u>
Minard 2000	18.5	8.8	12	11.3	6.1	15	6.3%	7.20 [1.34, 13.06]	2000	→
Davies 2002	13.9	1.6	34	10.4	1.2	39	8.9X	3.50 [2.79, 4.21]	2002	
Montejo 2002	15	10	50	16	16	51	6.7%	-3.00 [-8.19, 2.19]	2002	
Hsu 2009	18.2	11.6	59	18.2	11.2	62	7.4%	0.00 [-4.10, 4.10]	2009	
White 2009	7.12	6	51	9.1	10.55	55	7.9%	-1.98 [-5.22, 1.26]	2010	
Acosta-Escribano 2010	16	9	50	16	7	54	8.0%	-2.00 [-5.12, 1.12]	2010	
Davies 2012	12.5	8.6	91	12.7	9.6	69	8.2%	-0.20 [-2.90, 2.50]	2012	
Wan 2015	12.2	0.7	35	17.1	1	35	8.9%	-4.90 [-5.30, -4.50]	2015	+
Taylor 2016	14.24	8.97	25	14	8.41	25	7.0%	0.24 [-4.58, 5.06]	2016	
Zhu 2018	16.76	11.36	70	19.25	16.44	71	7.1%	-2.49 [-7.15, 2.17]	2018	
Llu 2019	12.96	4.11	50	15.83	4.72	50	8.6X	-2.87 [-4.60, -1.14]	2019	
Total (95% CI)			567			588	100.0%	-0.56 [-3.28, 2.16]		
Heterogeneity: $Tau^2 = 21$ Test for overall effect: Z =				= 12 (P	< 0.00	001); ŕ	* = 97 %			-10 -5 0 5 10 Favours Small Bowel Favours Gastric

www.criticalcarenutrition.com

Figure 6. ICU LOS (excluding Minard)

	Small Bowel		Gastric				Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI		
Montecalvo 1992	11.7	8.2	19	12.3	10.8	19	6.6%	-0.60 [-6.70, 5.50]	1992			
Kearns 2000	17	2	21	16	2	23	9.4%	1.00 [-0.16, 2.18]	2000			
Davies 2002	13.9	1.8	34	10.4	1.2	39	9.5X	3.50 [2.79, 4.21]	2002			
Montejo 2002	15	10	50	16	16	51	7.2%	-3.00 [-8.19, 2.19]	2002			
Hsu 2009	18.2	11.8	59	18.2	11.2	62	7.9%	0.00 [-4.10, 4.10]	2009			
White 2009	7.12	6	51	9.1	10.55	55	8.5%	-1.98 [-5.22, 1.26]	2010			
Acosta-Escribano 2010	16	9	50	16	7	54	8.5%	-2.00 [-5.12, 1.12]	2010			
Davies 2012	12.5	8.6	91	12.7	9.6	89	6.6%	-0.20 [-2.90, 2.50]	2012			
Wan 2015	12.2	0.7	35	17.1	1	35	9.5%	-4.90 [-5.30, -4.50]	2015	+		
Taylor 2016	14.24	8.97	25	14	8.41	25	7.4%	0.24 [-4.58, 5.06]	2016			
Zhu 2018	16.76	11.36	70	19.25	16.44	71	7.5%	-2.49 [-7.15, 2.17]	2018			
Llu 2019	12.96	4.11	50	15.83	4.72	50	9.2%	-2.87 [-4.60, -1.14]	2019			
Total (95% CI)			555			573	100.0%	-1.09 [-3.88, 1.71]				
Heterogeneity: $Tau^2 = 21$ Test for overall effect: Z -	-		-	= 11 (P	< 0.00	001); f	² = 96%			-10 -5 0 5 10		
rest for overall effect: 2	,							Favours Small Bowel Favours Gastric				

Figure 7. Hospital LOS

	Small Bowel				Gastric			Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI			
Minard 2000	30	14.7	12	21.3	14.7	12	6.9%	8.70 [-3.06, 20.46]	2000				
Kearns 2000	39	10	21	43	11	23	23.0%	-4.00 [-10.21, 2.21]	2000				
Hsu 2009	36	24.2	59	31.7	21.1	62	14.0%	4.30 [-3.81, 12.41]	2009				
Acosta-Escribano 2010	38	24	50	41	28	54	9.4%	-3.00 [-13.00, 7.00]	2010				
Davies 2012	28.8	26.1	91	27.4	21.1	89	16.6%	1.40 [-5.53, 8.33]	2012	_			
Zhu 2018	21.06	12.81	70	21.97	20.18	71	27.6%	-0.91 [-6.48, 4.66]	2018				
Total (95% CI)			303			311	100.0%	0.01 [-3.12, 3.15]		+			
Heterogeneity: $Tau^2 = 1$. Test for overall effect: Z =				(P = 0.	37);	7%			!	-20 -10 0 10 20 Favours Small Bowel Favours Gastric			

Figure 8. Duration of ventilation

Small Bowel		vel	0	Gastric			Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Montecalvo 1992	10.2	7.1	19	11.4	10.8	19	5.4%	-1.20 [-7.01, 4.61]	· · · · · · · · · · · · · · · · · · ·		
Minard 2000	15.1	7.5	12	10.4	6.1	15	6.2%	4.70 [-0.55, 9.95]	I		
Hsu 2009	28.5	24.9	59	23.8	18.2	62	3.4%	4.70 [-3.10, 12.50]			
White 2009	5.73	5.29	51	7.68	9.81	55	11.9%	-1.95 [-4.92, 1.02]	·		
Acosta-Escribano 2010	7.3	4	50	8.9	4	54	17.3%	-1.60 [-3.14, -0.06]	i —•		
Davies 2012	9.8	6.2	91	9.7	6.3	89	16.2%	0.10 [-1.73, 1.93]	i — •—		
Wan 2015	5.2	0.3	35	8.5	0.5	35	20.6%	-3.30 [-3.49, -3.11]			
Taylor 2016	8.28	5.01	25	10	6.95	25	10.6%	-1.72 [-5.08, 1.64]	I		
Zhu 2018	12.09	8.61	70	15.1	15.6	71	8.4%	-3.01 [-7.18, 1.16]	I		
Total (95% CI)			412			425	100.0%	-1.23 [-2.79, 0.33]			
Heterogeneity: $Tau^2 = 3.0$ Test for overall effect: Z =				• 6 (P <	: 0.000)1);	75%		-10 -5 0 5 10 Favours Small Bowel Favours Gastric		

www.criticalcarenutrition.com

Critical Care Nutrition: Systematic Reviews May 2021

Figure 9. Nutritional efficiency (%)

	Small Bowel			0	iastric			Mean Difference			Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year		IV, Ran	dom, 95% CI		
Montecalvo 1992	61	17	19	46.9	25.9	19	9.7%	14.10 [0.17, 28.03]	1992				_	
Kearns 2000	69	7	21	47	7	23	19.7%	22.00 [17.86, 26.14]	2000			-	-	
Montejo 2002	80	28	50	75	30	51	12.0%	5.00 [-6.31, 16.31]	2002					
Hsu 2009	95	5	59	83	6	62	21.3×	12.00 [10.04, 13.96]	2009			-		
Acosta-Escribano 2010	92	7	50	- 64	15	54	19.4%	8.00 [3.55, 12.45]	2010					
Davies 2012	72	21	91	71	19	69	17.9%	1.00 [-4.85, 6.85]	2012			- -		
Total (95% CI)			290			298	100.0%	10.59 [4.76, 16.41]				•		
Heterogeneity: Tau ² = 40 Test for overall effect: Z •	-			f = 5 (P	/ < 0.0	0001);	r ² = 66%			-50	-25 Favours Gast	0 2 ric Favours Sma		50

Figure 10. Time to reach EN target

-	Small Bowel Gastric					Mean Difference		Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Kortbeek 1999	34	7.1	37	43.8	22.6	43	26.9X	-9.80 [-16.93, -2.67]	1999		
Davies 2002	23.2	3.9	31	23	3.4	35	30.8X	0.20 [-1.58, 1.98]	2002	+	
Neumann 2002	43	24.1	30	28.8	15.9	30	23.4%	14.20 [3.87, 24.53]	2002	_ _	
Hsu 2009	32.4	27.1	59	54.5	51.4	62	16.6%	-22.10 [-36.64, -7.56]	2009	_ -	
Total (95% CI)			157			170	100.0%	-3.41 [-13.45, 6.62]		-	
$\begin{array}{l} \text{fitterogeneity: Tau^2 = 84.16; Chi^2 = 23.32, df = 3 (P < 0.0001); i^2 = 87\% \\ \hline \text{rest for overall effect: } Z = 0.67 (P = 0.51) \end{array}$											

Included Studies

- 1. Montecalvo MA, Steger KA, Farber HW et al. Nutritional outcome and pneumonia in critical care patients randomized to gastric versus jejunal tube feedings. The Critical Care Research Team. Crit Care Med. 20:1377-87, 1992.
- 2. Kortbeek JB, Haigh PI, Doig C. Duodenal versus gastric feeding in ventilated blunt trauma patients: a randomized controlled trial. J Trauma 1999;46:992-6.
- 3. Taylor SJ, Fettes SB, Jewkes C, Nelson RJ. Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med 1999;27:2525-31.
- 4. Kearns LJ, Chin D, Mueller L, Wallace K, Jensen WA, Kirsch CM. The incidence of ventilator-associated pneumonia and success in nutrient delivery with gastric versus small intestinal feeding: A randomized clinical trial. Crit Care Med 2000;28:1742-6.
- 5. Minard G, Kudsk KA, Melton S, Patton JH, Tolley EA. Early versus delayed feeding with an immune-enhancing diet in patients with severe head injuries. JPEN J Parenter Enteral Nutr 2000;24:145-9.
- 6. Esparza J, Boivin MA, Hartshorne MF, Levy H. Equal aspiration rates in gastrically and transpylorically fed critically ill patients. Intensive Care Med 2001;27:660-4.
- 7. Boivin MA, Levy H. Gastric feeding with erythromycin is equivalent to transpyloric feeding in the critically ill. Crit Care Med 2001;29(10):1916-9.
- 8. Day L, Stotts NA, Frankfurt A, Stralovich-Romani A, Volz M, Muwaswes M, Fukuoka Y, O'Leary-Kelley C. Gastric versus duodenal feeding in patients with neurological disease: a pilot study. J Neurosci Nurs. 2001 Jun;33(3):148-9, 155-9.
- 9. Davies AR, Froomes PR, French CJ, Bellomo R, Gutteridge GA, Nyulasi L, Walker R, Sewell RB. Randomized comparison of nasojejunal and nasogastric feeding in critically ill patients. Crit Care Med 2002;30(3):586-90.
- 10. Neumann DA, DeLegge MH. Gastric versus small-bowel tube feeding in the intensive care unit: a prospective comparison of efficacy. Crit Care Med. 2002 Jul;30(7):1436-8.
- 11. Montejo JC, Grau T, Acosta J et al. Multicenter, prospective, randomized, single-blind study comparing the efficacy and gastrointestinal complications of early jejunal feeding with early gastric feeding in critically ill patients. Crit Care Med 2002;30:796-800.
- 12. Hsu CW, Sun SF, Lin SL, Kang SP, Chu KA, Lin CH, Huang HH. Duodenal versus gastric feeding in medical intensive care unit patients: a prospective, randomized, clinical study. Crit Care Med. 2009 Jun;37(6):1866-72.
- 13. White H, Sosnowski K, Tran K, Reeves A, Jones M. A randomised controlled comparison of early post-pyloric versus early gastric feeding to meet nutritional targets in ventilated intensive care patients. Crit Care. 2009;13(6):R187. Epub 2009 Nov 25.
- 14. Acosta-Escribano J, Fernández-Vivas M, Grau Carmona T, et al. Gastric versus transpyloric feeding in severe traumatic brain injury: a prospective, randomized trial. Intensive Care Med. 2010;36(9):1532-1539. doi:10.1007/s00134-010-1908-3
- 15. Davies AR, Morrison SS, Bailey MJ, Bellomo R, Cooper DJ, Doig GS, Finfer SR, Heyland DK; ENTERIC Study Investigators; ANZICS Clinical Trials Group. A multicenter, randomized controlled trial comparing early nasojejunal with nasogastric nutrition in critical illness. Crit Care Med. 2012 Aug;40(8):2342-8.
- 16. Friedman G, Flávia Couto CL, Becker M. Randomized study to compare nasojejunal with nasogastric nutrition in critically ill patients without prior evidence of altered gastric emptying. Indian J Crit Care Med. 2015 Feb;19(2):71-5.
- 17. Wan B, Fu H, Yin J. Early jejunal feeding by bedside placement of a nasointestinal tube significantly improves nutritional status and reduces complications in critically ill patients versus enteral nutrition by a nasogastric tube. Asia Pac J Clin Nutr. 2015;24(1):51-7.

Critical Care Nutrition: Systematic Reviews May 2021

- 18. Taylor SJ, Allan K, McWilliam H, et al. A randomised controlled feasibility and proof-of-concept trial in delayed gastric emptying when metoclopramide fails: We should revisit nasointestinal feeding versus dual prokinetic treatment: Achieving goal nutrition in critical illness and delayed gastric emptying: Trial of nasointestinal feeding versus nasogastric feeding plus prokinetics. Clin Nutr ESPEN. 2016;14:1-8. doi:10.1016/j.clnesp.2016.04.020
- 19. Zhu Y, Yin H, Zhang R, Ye X, Wei J. Gastric versus postpyloric enteral nutrition in elderly patients (age ≥ 75 years) on mechanical ventilation: a single-center randomized trial. Crit Care. 2018;22(1):170. doi:10.1186/s13054-018-2092-z
- 20. Liu J, Hu Aili, Huang Yuxia. Efficiency analysis of enteral nutrition supportive nursing by nasojejunal tube in treatment of patients with severe craniocerebral injury. Journal of Clinical Medicine in Practice 2019; 23(5):107-110

Excluded Articles

#	Reason excluded	Citation
1	Pseudo-randomized	Grahm TW, Zadrozny DB, Harrington T. The benefits of early jejunal hyperalimentation in the head-injured patient. Neurosurgery 1989 Nov;25(5):729-35.
2	Not ICU patients	Strong RM, Condon SC, Solinger MR, Namihas BN, Ito-Wong LA, Leuty JE. Equal aspiration rates from postpylorus and intragastric-placed small-bore nasoenteric feeding tubes: a randomized, prospective study. JPEN J Parenter Enteral Nutr. 1992 Jan-Feb;16(1):59-63.
3	No clinical outcomes	Heyland DK, Drover JW, MacDonald S, Novak F, Lam M. Effect of postpyloric feeding on gastroesophageal regurgitation and pulmonary microaspiration: results of a randomized controlled trial. Crit Care Med 2001;29(8):1495-501.
4	Systematic review	Heyland DK, Drover JW, Dhaliwal R, Greenwood J. Optimizing the benefits and minimizing the risks of enteral nutrition in the critically ill: role of small bowel feeding. JPEN J Parenter Enteral Nutr. 2002 Nov-Dec;26(6 Suppl):S51-5; discussion S56-7.
5	Systematic review	Marik PE, Zaloga GP. Gastric versus post-pyloric feeding: a systematic review. Crit Care. 2003 Jun;7(3):R46-51. Epub 2003 May 6.
6	<50% ICU patients	Eatock FC, Chong P, Menezes N, Murray L, McKay CJ, Carter CR, Imrie CW. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. Am J Gastroenterol. 2005 Feb;100(2):432-9.
7	Meta-analysis	Ho KM, Dobb GJ, Webb SA. A comparison of early gastric and post-pyloric feeding in critically ill patients: a meta-analysis. Intensive Care Med. 2006 May;32(5):639-49.
8	Not ICU patients	Kumar A, Singh N, Prakash S, Saraya A, Joshi YK. Early enteral nutrition in severe acute pancreatitis: a prospective randomized controlled trial comparing nasojejunal and nasogastric routes. J Clin Gastroenterol. 2006 May-Jun;40(5):431-4.
9	No clinical outcomes	Zeng R, Jiang F. Comparison of nose jejunal tube and nasogastric tube in providing early enteral nutrition for patients with severe craniocerebral injury. Chinese Journal of Clinical Nutrition. 2010;18(6):355-357.
10	Meta-analyses	Jiyong J, Tiancha H, Huiqin W, Jingfen J. Effect of Gastric Versus Post-pyloric Feeding on the Incidence of Pneumonia in Critically ill Patients: Observations From Traditional and Bayesian Random-Effects meta-analysis. Intensive Care Med. 2013;32(1):8-15
11	Not ICU patients	Singh N, Sharma B, Sharma M, Sachdev V, Bhardwaj P, Mani K, Joshi YK, Saraya A. Evaluation of early enteral feeding through nasogastric and nasojejunal tube in severe acute pancreatitis: a noninferiority randomized controlled trial. Pancreas. 2012 Jan;41(1):153-9.
12	Identical study as Hsu 2009	Huang HH, Chang SJ, Hsu CW, Chang TM, Kang SP, Liu MY. Severity of illness influences the efficacy of enteral feeding route on clinical outcomes in patients with critical illness. Journal of the Academy of Nutrition and Dietetics. 2012.
13	Systematic Review	Deane AM, Dhaliwal R, Day AG, Ridley EJ, Davies AR, Heyland DK. Comparisons between intragastric and small intestinal delivery of enteral nutrition in the critically ill: a systematic review and meta-analysis.Crit Care. 2013 Jun 21;17(3):R125.
14	Meta-analyses	Wang X, Dong Y, Han X, Qi X-Q, Huang C-G, Hou L. (2013) Nutritional Support for Patients Sustaining Traumatic Brain Injury: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS ONE. 8(3): e58838.
15	Meta analyses	Alkhawaja S, Martin C, Butler RJ, Gwadry-Sridhar F. Post-pyloric versus gastric tube feeding for preventing pneumonia and improving nutritional outcomes in critically ill adults. Cochrane Database Syst Rev. 2015 Aug 4;(8):CD008875.
16	Pseudo-randomized	Ge W, Wei W, Shuang P, Yan-Xia Z, Ling L. Nasointestinal Tube in Mechanical Ventilation Patients is More Advantageous. Open Med (Wars). 2019;14:426-430. Published 2019 May 26. doi:10.1515/med-2019-0045